Deep multimodal learning for manufacturing problem solving
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDeep Reinforcement Learning for Solving the Vehicle Routing Problem
We present an end-to-end framework for solving Vehicle Routing Problem (VRP) using deep reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy g...
متن کاملMultimodal Deep Learning Library
The Neural Network is a directed graph consists of multiple layers of neurons, which is also referred to as units. In general there is no connection between units of the same layer and there are only connections between adjacent layers. The first layer is the input and is referred to as visible layer v. Above the visible layer there are multiple hidden layers {h1, h2, ..., hn}. And the output o...
متن کاملMultimodal Deep Learning
Deep networks have been successfully applied to unsupervised feature learning for single modalities (e.g., text, images or audio). In this work, we propose a novel application of deep networks to learn features over multiple modalities. We present a series of tasks for multimodal learning and show how to train deep networks that learn features to address these tasks. In particular, we demonstra...
متن کاملMultimodal Emotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models from multiple physiological signals. For unimodal enhancement task, we indicate that the best recognition accuracy of 82.11% on SEED dataset is achieved with shared representations generated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia CIRP
سال: 2021
ISSN: 2212-8271
DOI: 10.1016/j.procir.2021.03.083